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Abstract. We propose a novel outlier detection approach, namely high dimensional fuzzy outlier detection (HDFOD), to address the 
pertinence of outlier results, i.e., to find outliers in high dimensions that lack pertinence and understandability. Our key idea is to use 
fuzzy constraint technology to prune irrelevant objects for outlier detection, during which the nearness measure theory in fuzzy 
mathematics is used for detecting similarities between objects and constraint information. HDFOD finds outlier by searching sparse 
subspace, where genetic algorithms can be extended and incorporated into HDFOD such that an optimum solution of an outlier is 
discovered. While constructing a sparse subspace, we present the sparse threshold concept to describe the sparse levels of data objects 
in a subspace, where data objects are regarded as outliers. Then, we demonstrate the effectiveness and scalability of our method on 
synthetic and UCI datasets. The experiment evaluations reveal that our fuzzy constraint-based outlier detection is superior to two 
existing high dimensional algorithms. 
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1 Introduction 
 
Outlier detection, also called anomaly detection, has become an important data mining task for the detection of 
inconsistent or suspicious objects from large databases. Outlier mining has attracted increasing attention in many 
application fields, such as fraud detection for credit cards, intrusion detection in cyber-security, medical diagnosis, data 
cleaning, and financial analysis. Many prominent outlier mining approaches have been proposed for outlier detection 
from a global point of view, where each data object is extracted as outlier from the whole attribute dimension space of a 
dataset. However, these outlier results may be hard to understand and fail to attract experts or users. Some outlier 
detection results from partial dimensions are more interesting and helpful for the research of experts than those from the 
full dimensions. 

For example, in physical indicators, outlier monitoring based on ”blood pressure” and ”blood sugar” may be 
important for outlier search ”heart disease”. Some attributes, such as ”body temperature”, have no relation with outlier 
detection, but they may be related to other outlier detections. Outlier detection often occurs in the subsets.Therefore, we 
can improve the efficiency of mining on the basis of constrained subset outlier mining. 

We propose an outlier detection method that integrates the knowledge of domain experts (i.e., background 
knowledge) into the process of outlier mining on the basis of fuzzy constrains. We demonstrate that background 
knowledge is useful in pruning some irrelevant objects and in substantially improving outlier detection efficiency. 

 
1.1 Motivation 

 
Fuzzy constraint outlier mining addressed in this study is motivated by the following three observations: 

• For high-dimensional data, finding meaningful outliers becomes substantially complex and non-obvious. In 
addition, the traditional outlier detection methods have very low efficiency. 

• The mining results, which contain some meaningless outliers, are difficult to understand. 
• Outlier detection based constraint in high-dimensional datasets is critical because obtaining constraint 

conditions is difficult. Moreover, fuzzy constraint representation techniques for outlier detection are lacking. 
 

1.2 Contributions 
 

Motivated by the above mentioned three observations, we propose HDFOD - a local outlier detection method based on 
fuzzy constraint. HDFOD seamlessly integrates three modules: namely, fuzzy-constraint representation, fuzzy-
constraint- subspace searching, and constraint outlier detection. In fuzzy-constraint representation module, the nearness 
measure theory in fuzzy mathematics is used for the description of background knowledge, where priori information 
provided by a user can be quantified and expressed effectively through a reasonable nearness measure threshold. The 
fuzzy- constraint-subspace searching module extends the genetic algorithm (GA) for the search of subspaces that satisfy 
the constraint requirement. In the constraint outlier detection module, we introduce the concept of fuzzy constraint in 
the outlier mining method, and then use fuzzy constraint to improve the pertinence and understandability of outlier 
detection results. The module increases the efficiency and accuracy of HDFOD by pruning dissatisfied condition objects. 
Importantly, HDFOD achieves good interpretability, because constraint information in HDFOD facilitates insightful 
explanations on detected outliers. 

Using synthetic and real world high dimensional datasets, we conduct extensive experiments to investigate the 
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effectiveness of HDFOD. Our experimental results show that HDFOD significantly improves the overall performance of 
local outlier detection. Moreover, HDFOD significantly improves the efficiency of the existing outlier detection schemes 
by up to 34% and average of 23%. 
 
1.3 Roadmap 

 
The remainder of this paper is organized as follows: Section II discusses the related work of outlier mining techniques. 
Section III reviews the preliminaries of this study. Section IV describes the background knowledge representation 
method on the basis of nearness measure. Section V presents outlier detection algorithm and implementation details of 
HDFOD. Section VI discusses the performance evaluation of HDFOD. Finally, Section VII concludes the paper with 
future research directions 
 
2 Related Work 

 
    This section, reviews existing techniques related to our study. 
    Outlier detection is the process of finding abnormal data objects that deviate significantly from the normal data and 
do not satisfy the general pattern or behavior  of the data. As an important technology of data mining, outlier mining has 
been widely used in some fields, such as detection of credit card fraud, network security analysis, and intrusion detection. 
In the past, many outlier detection methods have been proposed. These existing approaches can be divided into four 
categories, namely, statistical-based, clustering- based, density-based, and subspace-based approaches. 
In statistics-based techniques[1] [2] [3] [4], knowledge of the underlying distribution is assumed, and some objects that 
deviate from the distribution are searched for outlier detection. Eskin[1] proposed a method in which machine learning 
techniques are used for the elucidation of anomalies and performed statistical tests to detect the anomalies. Chen et 
al.[2] presented robust estimation and outlier detection approaches based on their proposed generalized local statistical 
framework. Additionally, Hido et al.[3] used a statistical method to address the problem of inlier-based outlier detection, 
where their key idea is to use the ratio of training and test data densities as an outlier score. The disadvantage of these 
methods is that we do not always know the underlying distribution of the given datasets. 
Clustering-based methods[5] [6] [7] [8] [9] [10] mainly rely on clustering techniques for the characterization of underlying 
data behavior. Some clusters contain far less points than other clusters, and are more likely to be outliers. The main point 
of Jiang et al. [5] is that the concept of object outlier is extended to the cluster, and they propose an outlier detection 
method on the basis of clustering (i.e., CBOD). Shi and Zhang[6] presented an iterative detection method for the detection 
clusters and outliers in another perspective for noisy datasets, where the adjustment of the relationship between clusters 
and outliers is executed repeatedly until a particular condition is met. We introduce the concept of cluster histograms, 
which provides an efficient way to estimate and summarize the most important data distribution profiles over different 
stream segments. In [7], the concept of cluster histograms was provided and applied to outlier detection for modelling 
and mining data streams. However, clustering-based approaches must build a clustering model, which limits the outlier 
detection performance. 
In density-based methods, models are adjusted such that outliers occur far from the closest neighbors. Breunig et al. 
assigned an anomaly score to each object, namely, the local outlier factor (LOF [11]). In approach, similarities are 
computed according to the distance of an object from the sur- rounding, and the density estimate for each object with 
its k nearest neighbor are obtained. Several extensions of the LOF model have been proposed (e.g., uncertain local outlier 
factor (ULOF [12])), the flexible kernel density estimates (KDEOS [13]), and natural outlier factor (NOF [14]). Liu et 
al.[12] address outlier detection with imperfect data labels and incorporate LSH and support vector data description 
(SVDD). Their method introduces the likelihood values of each input datum into the SVDD training phase, where the 
local uncertainty is captured. Then, global classifiers are constructed by the incorporation of negative examples into 
likelihood values. After analyzing the interplay be- tween density estimation and outlier detection, Schubert et al.[13] 
proposed an outlier detection method and performed kernel density estimation, which can be modified for the detection 
of unusual local concentrations or trends in a dataset. Salehi et al.[15] presented the memory-efficient- incremental-local 
outlier algorithm, which has nearly the same accuracy as LOF but within a fixed memory bound. These approaches achieve 
good mining accuracy without relying on assumptions of the generative distribution of data. Unfortunately, these 
solutions have a high processing time and are complex in the testing phase. 
Subspace-based methods[16] [17] [18] [19] [20] [21] are introduced for outlier detection in subspaces. Traditional 
outlier detection techniques are based on the full dimension space, which can be more complex and subtle than subspace-
based methods. To solve this problem, Aggarwal et al.[16] proposed an outlier method based subspace, which can mine 
outliers in any possible subspace. Kriegel et al.[17] propose a local outlier model to distinguish exceptional outliers by 
considering combinations of different subsets of attributes. Muller ¨ et al.[18] propose an outlier ranking, which 
computes local density deviation by searching relevant subspaces for objects deviating in subspace projections. The 
work proposed by Zhang et al. [19] is a concept lattice based outlier mining algorithm for low dimensions. It improves 
the efficiency and accuracy of outlier mining. 
 
3 PRELIMINARIES 
 

This section introduces the fuzzy set and fuzzy similarity scale, followed by an introduction of the GA. 
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3.1 Fuzzy Set and Fuzzy Similarity Scale 
Fuzzy techniques that are a generalized interval analysis method can address the issues about the analysis of un- 

certain and/or vague information. Fuzzy set theory was initially introduced by Zadeh[22] in 1965 as a generalization of 
classic logic. Nowadays, fuzzy set theory is widely used in many fields, for example, in artificial intelligence[23], pattern 
recognition[24], decision theory[25], and computer science[26]. In mathematics, fuzzy sets are sets whose elements have 
degrees of membership. A fuzzy number describes the relationship between an uncertain quantity and a membership 
function A(x), which ranges between 0 and 1. A fuzzy set is an extension of the classical set theory in which an x can be 
a member of a set with a certain membership function A(x). Fuzzy sets are regarded as fuzzy numbers if they are normal, 
convex and bounded. We give two definitions [27] [28] [29] as follows: 

Definition 1: If X is a collection of objects where x is an element included X , then a fuzzy set F (X ) on X which is a 
set of ordered pairs can be represented as the following mathematical symbol: F (X ) = {(x, A(x)|x ∈ X )}. 

A(x) is called the membership function, which ranges between 0 and 1. The membership function denotes the 
possible membership degrees of the element x ∈ X . A(x) = 1 means full membership, A(x) = 0 means non- 
membership and intermediate values between 0 and 1 mean partial membership. 

Given A ∈ F (X ), we need to know which class A should be identified with. To solve this problem, we need to measure 
how close two fuzzy sets are. 
Definition 2: If 𝑁: 𝐹(𝑋) × 𝐹(𝑋) → [0,1] satisfies that 
1. N(∅, X) = 0 and N(𝐴, 𝐴) = 1 whenever 𝐴 ∈ 𝐹(𝑋), 
2. N(A, B) = N(B, A) whenever 𝐴, 𝐵 ∈ 𝐹(𝑋), 
3. 𝑁(𝐴, 𝐶) ≤ min (𝑁(𝐴, 𝐵), 𝑁(𝐵, 𝐶)) whenever A⊆ 𝐵 ⊆ 𝐶 
then 𝑁 is called a nearness measure. 

 
3.2 GA 
GA [30] can be described as a heuristic search and optimization technique inspired by the way nature evolves species 
using natural selection of the fittest individuals. This method transposes the notions of natural evolution to the world of 
computers and imitates natural evolution. The GA operation is based on the Darwinian principle of ”survival of the 
fittest” and the possible solutions to the problem being solved are represented by a population of chromosomes. A 
chromosome is a string of binary digits, and each digit that makes up a chromosome is called a gene. The fit 
chromosomes (i.e., individuals) are likely to survive and have a significant chance of passing their good genetic features 
to the next generation. Moreover, a mutation scheme is also applied to ensure a sufficient amount in the population. GA 
uses three operators, which are described below, on its population. 
• Selection: The selection strategy addresses which of the chromosomes in the current generation will be used to 

reproduce offspring, which will have even high fitness. Fitness can be defined as a capability of an individual to 
survive and reproduce in an environment. In this method, the selection probability of each individual is 
proportional to its fitness value. The greater the individual fitness, the higher the probability of being chosen, and 
vice versa. After the individual has been selected, the transaction can be paired randomly for later crossover 
operation. 

• Crossover or recombination: After selection, the crossover operation is applied to the selected positions. This 
operation will generate some new individuals by swapping genes or sequence of bits in the string between two 
individuals. This process is repeated with different parent individuals until the next generation has enough individuals. 
After crossover, the mutation operator is applied to a randomly selected subset of the population. 

• Mutation: Mutation alters the genes of an individual to introduce diversification into the population. In general, the 
basic steps of the mutation operator are as follows: first, to determine whether the individuals in the population are 
in accordance with the pre-set mutation probability, and second, to select randomly) the location of mutation and to 
change the value of gene. 

 
4 Fuzzy Constraint Based on Nearness 
 
In most outlier detection algorithms, mining results contain some valueless outliers for users. We only get a range or 
some fuzzy descriptions about the priori information; therefore, the range should be converted to a constraint 
information, which can help to detect outliers. In fuzzy set theory, the nearness measure can frequently recognize some 
fuzzy pattern or objects. For example, one often describes a woman by using words such as young, tall, thin, and long 
hair. From these fuzzy information, the right woman can be recognized by using the nearness measure. Therefore, the 
nearness measure is an improved scheme, which describes fuzzy knowledge in constraint-outlier detection. 

 
4.1 Equations 

The nearness measures can be defined by many methods, for example, Hamming distance-related, Euclidean 
distance-related, Minkowski distance-related, and lattice- based methods. The lattice-based method (i.e., lattice near- 
ness measure) is defined by means of the inner and outer product of two fuzzy sets, and is an important index in the 
evaluation of the nearness of two fuzzy sets. We use lattice nearness measure to describe fuzzy constraints. 
For matching the fuzzy constraints, we redefine the lattice nearness measure in accordance with the idea in [31] [32]. 
Definition 3: Given a dataset DS, A = {𝐴1, 𝐴2, . . . , 𝐴d } is an attribute set, and O = {𝑂1   , 𝑂2, . . . , 𝑂n } is an object 
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set in DS, where 𝑂  = {𝑂1 , 𝑂2 , . . . , 𝑂n  }. 𝑂ij (i = 1, 2, . . . , n; j = 1, 2, . . . , d) is the value of object 𝑂j on attribute 𝐴i . 
Suppose U = {𝑈1, . . . , 𝑈i, . . . 𝑈d} is a priori knowledge provided by users, where 𝑈i is the value on attribute 𝐴i . 
Let F (X) be a fuzzy set, X be a subset of attributes and 𝑂i, U ∈ F (X), is  called the inner product of 𝑂C and U . 

𝑂C ⨁ 𝑈 = ⋁x ∈ X(𝑂𝑖(𝑥) ⋁ 𝑈(𝑥))    (1) 
is called the inner product of 𝑂i and U 

                              𝑂i  ⨂ 𝑈 =    ∧ x ∈ X (𝑂i(𝑥) ⋁ 𝑈(𝑥))     (2) 

is called the outer product of 𝑂C and U. 

With the notion of inner and outer product, we define lattice nearness measure 𝑁L as follows, ∀ 𝑂i, U ∈ F (X), 
                                                              𝑁L(𝑂i, 𝑈) = (𝑂i ⨁ 𝑈) ∧ (1 – 𝑂i ⨂ 𝑈)  (3) 
The 𝑁L(𝑂C, 𝑈) has the following properties: 

  
These properties indicate that 𝑁L is not a nearness measure in strict sense because 𝑁L(𝐴, 𝐴) = 1 does not necessarily 
hold. However, 𝑁L is an important index in evaluating the nearness of two fuzzy sets and extensively used in the 
literature. Hence, from property 3 𝑁L (𝐴, 𝐴) = 1 if a = 1 and a = 0, which are true for fuzzy sets in practice. The above 
mentioned properties imply that the nearness measure value of two fuzzy sets is not greater than 1, and that the two 
fuzzy sets have similarly increasing nearness measure value. 
Definition 4:  Given an object 𝑂i, priori knowledge U, and threshold value σ,    if 𝑁L(𝑂i, 𝑈) ≥ 𝜎 , then object 𝑂i is called 
a positive object, which matches a constraint condition (i.e., an object that raises the interest of the user). If 𝑁L (𝑂i, 𝑈) < 
𝜎, then object 𝑂i is called a negative object, which does not match a constraint condition (i.e., an object that loses the 
interest of the user). In this study, threshold value σ is called nearness-threshold, which is provided by users. 
We can compute the nearness measure between each object in dataset DS and priori knowledge U, and then divide DS 
into two subsets in accordance with definition 4, where the first subset satisfies constraint conditions and the other subset 
does not satisfy these conditions. In other words, some objects are pruned because they do not satisfy the constraint 
conditions, and the efficiency of outlier detection is improved significantly on the reduced dataset. 

 
4.2 An Example 

We use an exampDle to prune disinterested objects in the dataset (Table I) by using fuzzy constraint information. We 
also show how to compute the lattice nearness measure between each object and constraint knowledge. 
 

TABLE I. A SAMPLE OF TEA DATASET 
 

Tid twist Color Neatness liquid color Aroma flavor 
O1 20.00 8.00 4.50 7.00 22.50 23.00 
O2 12.50 9.00 3.05 8.50 16.25 19.50 
O3 20.25 7.80 4.45 6.00 22.75 21.25 
O4 20.50 8.10 3.95 9.00 21.75 22.00 
O5 22.50 8.60 4.35 8.50 20.00 19.75 
O6 16.75 6.50 3.15 6.80 17.50 17.75 
O7 23.25 8.00 3.50 6.10 18.00 16.25 
O8 16.25 6.30 4.00 8.20 19.75 20.25 
O9 22.50 7.80 3.65 7.50 17.25 17.00 
O10 21.25 8.30 4.00 9.00 21.25 21.00 

 
Table I is a dataset composed of tea quality standard information, including 7 attributes and 10 data objects. eliminate the 
difference among the evaluation indicators of the tea dataset. , we use the Min-Max normalization method[33] to 
normalize the original data, and then a normalized matrix of the tea dataset is generated (Table II). Constraint condition 
is assumed as U={0.5, 0.4, 0.3, 0.8, 0.5, 0.4} and σ = 0.4, that is, priori information consists of Twist=0.5, Color=0.4, 
Neatness=0.3, Liquid Color=0.8, Aroma=0.5, Flavor=0.4, and threshold is set to 0.4. We can use lattice nearness measure 
to divide the normalized matrix (Table II) into two subsets. We also describe the calculation process of the first object, 
which consists of four steps. 
 
TABLE II. THE NORMALIZED MATRIX OF TEA DATASET 
 

Tid twist Color Neatness liquid color Aroma flavor 
O1 0.70 0.63 1.00 0.33 0.96 1.00 
O2 0.00 1.00 0.00 0.83 0.00 0.48 
O3 0.72 0.56 0.97 0.00 1.00 0.74 
O4 0.74 0.67 0.62 1.00 0.85 0.85 
O5 0.93 0.85 0.90 0.83 0.58 0.52 
O6 0.04 0.07 0.07 0.27 0.19 0.22 
O7 1.00 0.63 0.31 0.03 0.27 0.00 
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O8 0.35 0.00 0.66 0.73 0.54 0.59 
O9 0.93 0.56 0.41 0.50 0.15 0.11 
O10 0.81 0.74 0.66 1.00 0.85 0.70 

 
Step 1. The inner product of 𝑂> and U is calculated by using equation 1. 

𝑂> ⨁ 𝑈 = ⋁J∈K(𝑂1(𝑥) ⋁ 𝑈(𝑥)) 
                = ∨ {0.70 ∧ 0.50, 0.63 ∧ 0.40, 1.00 ∧ 0.30, 0.33 ∧ 0.80, 0.96 
                     ∧ 0.50, 1.00 ∧ 0.40, } 
                = ∨ {0.5, 0.4, 0.3, 0.33, 0.5, 0.4 } 
                 = 0.5 

Step 2. The outer product of 𝑂> and U is calculated by using equation 2. 
                                                𝑂> ⨂ 𝑈 = ∧J∈K (𝑂C(𝑥) ⋁ 𝑈(𝑥)) 

                             = ∧ {0.70 ∨ 0.50, 0.63 ∨ 0.40, 1.00 ∨ 0.30, 0.33 ∨ 0.80, 0.96 
                                                                             ∨ 0.50, 1.00  ∨ 0.40, } 

= ∨ {0.7, 0.63, 1.00, 0.8, 0.96, 1.00 } = 0.63 
Step 3. The lattice nearness measure of 𝑂> and U is calculated by using equation 3 and the computing results of step 1 
and 2. 

𝑁N(𝑂>, 𝑈) = (𝑂> ⨁ 𝑈) ∧ (1 − 𝑂> ⨂ 𝑈) 
                  = 0.5 ∧ (1−0.63) 
               = 0.37 

 
Step 4. We compare the lattice nearness measure to the threshold value. When the lattice nearness measure of object 
less than the threshold (i.e., 𝑁N < σ), the object is pruned; otherwise, the object is kept. Because of the lattice nearness 
measure of 𝑂> is less than 0.4, 𝑂> is pruned. 
Similarly, the nearness measure of the other objects in Table II can be computed by using above calculation process In 
computing results, three objects are pruned because their nearness measures are less than the threshold, so the reduced 
dataset consists of seven objects. 

	
5 Subspace and Outlier Detection 
 

After applying the fuzzy constraint approach to prune disinterested objects in a dataset, we detect outliers (Section 
5.1) by searching subspace (Sections 5.2) in the reduced dataset. 

 
5.1 Outlier detection based on subspace 

Outlier mining of high-dimensional data has been a major challenge owning to the curse of dimensionality. Most 
existing approaches become substantially inefficient when the required outlier detection is measured among data objects 
in a full-dimensional  space. Moreover, the mining results may become more significant in some applications when 
outliers are detected in partial dimensions. Subspace-based methods can effectively detect local outliers from partial 
dimensions.  

Definition 5: Given that dataset DS includes d attributes and n objects, let A = {𝐴1, 𝐴2, . . . , 𝐴d }be its attribute set 
and O = {𝑂1, 𝑂2, . . . , 𝑂n } be its object set.  A subspace is described as S = (O’ , A ), where A’ is the attribute set and A’ 
⊂ A, O’ denotes the object set and O’ ⊂ O. If the subspace consists of t attribute, we call the subspace a t-dimensional 
subspace. 

Dataset DS can be divided into many subspaces, where the whole objects in each subspace should have similar 
features in their own t-dimensional attributes. To find such similar attribute values, we first perform a grid discretization 
of the data. Each attribute of the data is divided into φ ranges. These ranges are created on an equidepth basis; thus, each 
range contains a fraction f = 1/φ of the objects. These ranges form the units of locality that we will use to define low-
dimensional subspaces. An outlier detection of subspaces is one in which the density of the data is exceptionally lower 
than average. Let us consider a t-dimensional subspace that is created by picking grid ranges from t different 
dimensions. The expected fraction of the objects in that region if the attributes were statistically independent would be 
equal to 𝑓t . Given a dataset DS, n is its number of objects and d is its number of attributes. Let S is a t-dimensional 
subspace of DS, if the data are uniformly distributed, and then the presence or absence of any object in S are Bernoulli 
random variables with probability 𝑓t . The expected fraction and standard 
deviation of the objects in S are given by 𝑛 ∗ 𝑓t and  (𝑛 ∗ 𝑓t ∗ (1 − 𝑓t))1/2 in accordance with the description in [16]. 
We measure the sparsity degree F(S) of the subspace S as follows: 

                                                                                     (4) 

Where |S| is the number of objects in subspace S. Given a sparsity degree threshold ∆ (note that ∆ is a 
negative number), if F (S) ≤ ∆, then S is called a sparse subspace (i.e., the density of the data in subspace S is 
exceptionally lower than average). Therefore, objects including subspace S are outliers in our paper. 
 

ICONIP2019 Proceedings 49

Volume 16, No.1 Australian Journal of Intelligent Information Processing Systems



	

 

5.2 Searching subspace with GA 
The number of subspaces increases exponentially when the number of dimensions increases, and subspaces in high-

dimensional data cannot be completely exhausted. Therefore, searching sparse subspaces becomes an urgent problem. 
This section, introduces a novel searching sub- space method, named GA, which is a method of searching for the 
optimal solution through the simulation of natural evolution process. Subspace matching conditions of sparsity degree 
threshold can be efficiently searched (i.e., ∆). 
Given a reduced dataset DS ,  let  A = {𝐴1, 𝐴2, . . . , 𝐴d }be its attribute set,  and O = {𝑂1, 𝑂2, . . . , 𝑂n } be its objects set. 
We randomly select m object from O, which generate a new object set O’ = {𝑂′1, 𝑂′2, . . . , 𝑂′m }, where m < n. 
Significantly, O’ ⊂ O. For each object in O’, we randomly select (d−t) attributes which will be replaced by the value * 
denoting that the attribute is a ”don’t care attribute” or ”invalid attribute”. Conversely, other attributes are” valid 
attributes”. Therefore, each object in O’ consists of t ”valid attributes” and (d−t) ”invalid attributes” after replacement, 
and the original object set O’ will be transformed into a new dataset that is denoted O” . In this paper, O” is regarded as 
a population of the GA in HDFOD, and an object in O” is considered to be an individual. In our HDFOD, we make use of 
equation 4 to denote the fitness function of GA. The pseudocode of HDFOD is detailed in Algorithm 1, which performs 
fuzzy-constraint operation (Line 1 or Algorithm 2) and subspace-search operation by using GA (Line 3-14). 
HDFOD consists of the following five steps: 

Step 1. Some objects can be pruned in accordance with fuzzy constraint, and then the reduced dataset DS is 
generated (Line 1 in Algorithm 1). The procedure of fuzzy constraint takes the following five phases to create DS’ . 
First, the inner product is calculated in accordance with equation 1 presented in Section 4.1 (also Line 4 in Algorithm 
2). Second, the outer product is calculated in accordance with equation 2 presented in Section 4.1 (also Line 5 in 
Algorithm 2). Third, the lattice nearness measure is computed in accordance with equation 3 in Section 4.1 (also Line 6 
in Algorithm 2). Fourth, a positive object that matches the constraint condition, can be obtained by comparing the lattice 
nearness measure to the threshold value (Lines 7-9 in Algorithm 2). Finally, the previous four phases are repeated until 
all objects in dataset DS are scanned; as a result, the reduced dataset DS’ is generated. 

Step 2. A new population is generated by the selection operator of GA, whose purpose is to transfer the optimized 
individuals to the next generation. Many methods are used for the selection operator of GA, for example, roulette wheel 
selection, stochastic universal sampling, local selection, and truncation selection. Before selection operator, the 
population of GA needs to be initialized, where M individuals are randomly 
 
selected from DS’ (the detailed description is presented in the second paragraph in Section 5.2). Moreover, the results 
are stored to array Indi[M ] (Line 2 in Algorithm 1). 
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At present, several common selection operators exist, such as fitness ratio, random traversal sampling, and local 

selection methods, in which roulette selection method is the most simple and most common scheme. In this method, the 
selection probability of each individual is proportional to its fitness value. 
In our HDFOD, the tournament selection strategy is used in selection operator (Line 4 in Algorithm 1). The reasons are as 
follows. The tournament selection strategy is also one of the selection methods, whose main procedure is to select r 
individuals from population at a time, and then select the best one from r individuals and add it to the offspring 
population. This selection operation is repeated until the size of the offspring population is equal to that of the parent 
population. The tournament selection strategy can be used to validly solve the problem of maximization or minimization. 
Conversely, some strategies need to shift fitness values when the minimization problem is solved, for example, roulette 
wheel selection strategy. In this paper, GAs are used to solve the minimization problem. Therefore, we use the 
tournament selection strategy to select the optimized individuals. 

Step 3. This step performs crossover operator of GA described in Line 5 in Algorithm 1. The crossover operator is 
an exchange of some gene positions that are randomly selected between two individuals, and then produce two new 
individuals as an input of the mutation operator. Traditional methods include single-point, two-point, multi- point, and 
uniform crossover. We used optimized crossover mechanism in GA for finding the optimum outlier. Aggarwal et al.[34] 
introduces a detail of the crossover operator. 

Step 4. In this step, a mutation operator (Line 6 in Algorithm 1), which modifies the values in some positions of the 
gene, is executed to maintain various populations. In our HDFOD, if a picked position in an individual (i.e., an object) 
is an ”invalid attribute” (second paragraph in Section 5.2), then we change its value to a number between 1 and φ. At 
the same time, we need to select a randomly ”valid attribute” and change its value to ”*”. If a picked position is a ”valid 
attribute”, then we change its value to a random number between 1 and φ. 

Step 5. We detect outliers by searching sparse subspace, where a subspace is regarded as a sparse subspace in 
accordance with the definition of sparse subspace (the last paragraph in Section 5.1). The sparsity degree of each 
individual (i.e., object) in the population is calculated by using equation 4 (the second paragraph in Section 5.2), and 
then we compare the sparsity degree to threshold ∆ (Lines 9-12 in Algorithm 1). If the sparsity degree is less than or 
equal to the threshold (i.e., F(Indi[j]) ≤ ∆), then subspace, which contains the individual or the object, is a sparsity 
subspace. 
Therefore, the objects in the subspace are regarded as outliers. Subsequently, a new object is randomly selected as 
individual and added to the population. 
 
6 Experimental Evaluation 
 

This section, experimentally evaluates HDFOD and compares with Gen and NOF, where Gen is presented in [16] 
and NOF is presented in [14]. For all reported results, the test platform is a Dual 2.4GHz Intel Core2 T9600 laptop with 
4GB RAM. Gen, NOF and HDFOD algorithms are all coded in Java (jdk 1.6). We test the outlier detection on both 
synthetic and UCI datasets. 
 
Synthetic Datasets. For scalability experiments, we use the data generator model described in [35] (available from 
http://dx.doi.org/10.1137/1.9781611972740.23) to create two groups of synthetic datasets. The first group has five 
datasets (i.e., Syn1-1, Syn1-2, Syn1-3, Syn1-4, and Syn1-5), which include 50,000 objects and various dimension 
numbers. The dimension numbers of the five datasets are 25, 50, 100, 150, and 200, respectively. Table III summarizes 
the characteristics of these datasets in the first group. The second group is composed of five datasets (i.e., Syn2-1, Syn2-
2, Syn2- 3, Syn2-4, and Syn2-5), which include various object numbers and 200 dimensions. The object numbers of the 
five datasets are 500,000, 1000,000, 1500,000, 2000,000, and 2500,000, respectively. Table IV summarizes the 
characteristics of these datasets in the second group. In addition, we add a little outlier in each dataset. 
TABLE III. THE FIRST GROUP SYNTHETIC DATASETS 
 

Datasets objects number attribute number outlier number 
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Syn1-1 50,000 25 50 
Syn1-2 50,000 50 50 
Syn1-3 50,000 100 50 
Syn1-4 50,000 150 50 
Syn1-5 50,000 200 50 

 
 
TABLE IV. THE SECOND GROUP SYNTHETIC DATASETS 
 

Datasets objects number attribute number outlier number 
Syn2-1 50,000 200 50 
Syn2-2 100,000 200 100 
Syn2-3 150,000 200 150 
Syn2-4 200,000 200 200 
Syn2-5 250,000 200 250 

 
• UCI Datasets. To evaluate HDFOD in a real life situation, we select five real world benchmark datasets from the 

UCI machine learning repository[36] (available from http://archive.ics.uci.edu/ml): Census Income (i.e., UCI1), 
Letter Recognition (i.e., UCI2), HTRU2 (i.e., UCI3), Nursery (i.e., UCI4), and Thyroid Disease (i.e., UCI5). Since 
outlier mining is conceptually similar to detecting objects that belong to a rare class, we focus on datasets where the 
class definitions feature a clear minority class. We assume this class to contain the outliers in these datasets. In 
addition, the datasets are cleaned to deal with the categorical and missing attributes. Table V summarizes the 
characteristics of these four datasets. 

TABLE V. UCI DATASETS 
 

Datasets objects number attribute number 
Census Income(UCI1) 48842 14 

Letter 
Recognition(UCI2) 

20000 16 

HTRU2(UCI3) 17898 9 
Nursery(UCI4) 12960 8 

Thyroid Disease(UCI5) 7200 21 

 
6.1 Performance Measure 
 

In this group of experiments, we evaluate the performance of HDFOD when the sizes of nearness and sparsity 
thresholds grow dramatically. 
Fig. 1(a) illustrates that the running times of HDFOD reduce when the nearness threshold is increased. High nearness 
threshold improves HDFOD’s performance, and the reason is as follows: when the nearness threshold increases, a 
decreasing number of objects will satisfy the constrained condition. This phenomenon leads to the small reduction 
dataset, that is, the searching space for outlier detection becomes smaller than the original space. Therefore, the execution 
times of HDFOD is also decreasing, and its efficiency is improved Fig. 1(b) reveals that the executing times of HDFOD 
increase with an increasing sparsity threshold. When the sparsity threshold varies from -2 to -1, HDFOD’s running time 
is slowly increasing. We conclude that a small sparsity threshold shortens running time by quickly detecting the outlier. 
From equation 4, if the sparsity threshold is a small value, then the number of sparsity subspace is decreased and the time 
of searching sparsity subspace is also decreased. 

 
 
Fig. 1. Impacts of parameters σ and Δ on the efficiency of HDFOD. The synthetic dataset Syn2-2 is used to test used for 
massive data. 
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Fig. 2. Impacts of parameters σ and ∆ on the accuracy of HDFOD. The synthetic dataset Syn2-2 is used to test used for 
massive data.	

Fig. 2 depicts HDFOD’s accuracy in outlier detection. More specifically, we draw two intriguing observations from 
Fig. 2(a). First, when the nearness threshold is increasing from0.25 to 0.35, the mining accuracy is improved. If the 
near- ness threshold σ is configured to a small value(e.g., 0.25,0.3 and 0.35), then a small number of objects are pruned. 
These reduced objects are meaningless for outlier detection and have adverse impacts on mining accuracy. The second 
observation is that the mining accuracy is worsened when σ is set to a big value (e.g., 0.4 and 0.45). The reason is that a 
high σ can prune a large number of objects that include some important information for maintaining high mining 
accuracy. Fig. 2(b) reveals that a large sparsity threshold ∆ improves HDFOD’s mining accuracy. When sparsity 
threshold∆ is a large value, then more sparsity subspaces can be found. Therefore, that an increasing number of outliers 
can be searched from the sparsity subspace enhances the HDFOD’s accuracy. On the contrary, if ∆ is configured to a 
small value, the number of sparsity subspaces is decreased. Hence, some sparsity subspaces including outliers may not 
be detected, and the accuracy of HDFOD may be worsened. 

 
6.2 Scalability 

 
We evaluate the scalability performance of HDFOD by increasing the numbers of objects and attributes. Two groups 

of synthetic datasets are tested to drive the scalability analysis of HDFOD. 
Fig. 3 exhibits the efficiency of HDFOD with an increasing number of data attributes and objects. The experimental 
results plotted in Fig. 4(a) indicate that the execution time of HDFOD increases when the number of attributes is 
sharply enlarged. The outlier detection process is slowed down because the number of subspaces is quickly increased by 
the excessive attribute number. Interestingly, the increasing speed of HDFOD’s time is slower than that of the attribute 
number. This 
 
phenomenon implies that our HDFOD can be applied to high-dimensional data. Fig. 3(b) shows that when the size of 
the dataset increases from 5×104 to 2.5×105, the time of HDFOD is quickly increasing. The range of searching 
subspace sharply increases with the increasing size of datasets, which leads to the worsening of the efficiency of outlier 
detection. The running time increases approximately in a line with the increase of dataset size. Thus, our HDFOD can 
be used for massive data. 
Fig.	 4	 reveals	 that	 the	 accuracy	 of	HDFOD	remains	 almost	 unchanged	when	 data	 dimensionality	 and	 size	 are	
varied.	The	experimental	results	illustrated	in	Fig.	4(a)	show	that	HDFOD’s	accuracy	is	declined	from	90%	to	87%	
when	the	number	of	attributes	increases	from	25	to	200.	This	range	of	decline	is	small,	the	reason	is	that	we	use	
GA	 in	 HDFOD	 to	 search	 sparsity	 subspace,	 where	 the	 fitness	 function	 (e.g.,	 sparsity	 degree,	 Formula	 4)	 has	
nothing	to	do	with	the	number	of	attributes.	Fig.	4(b)	presents	a	similar	experimental	result	when	the	number	of	
objects	 increases	 from	 5×104	 to	 2.5×105.	 Such	 a	 high	 accuracy	 is	 attributed	 to	 GA	 that	 can	 find	 the	 optimal	
solution	from	a	large	number	of	data.	Hence,	from	the	perspective	of	accuracy,	our	HDFOD	is	suitable	for	not	only	
high-dimensional	data,	but	also	massive	data.	
Fig. 5(a) reveals that HDFOD is able to achieve highly efficient results and its performance is generally consistent. Fig. 
5(a) shows that HDFOD takes less time than the other two algorithms. The reason is that HDFOD uses fuzzy constraint 
to prune some unrelated objects for outlier detection. Hence, in HDFOD method, outliers are detected from a reduction 
dataset; otherwise, the other two algorithms detect outlier from an original dataset. Thus, our HDFOD has a little 
searching space, which leads to a high efficiency, compared with the other two algorithms. 
Fig. 5(b) significantly depicts the accuracies of three algorithms. From the experimental results, HDFOD has a higher 
accuracy compared with Gen and NOF. In our HDFOD, a fuzzy constraint technology is used to prune negative objects 
for outlier detection. These negative objects do not help to detect outliers; conversely, they have a negative influence on 
the algorithm’s accuracy. Therefore, HDFOD has more chances for finding the correct outliers, that is, HDFOD has a 
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high accuracy 
 

 
 
                                (a).  Accuracy with various dimension numbers  (b). Accuracy with various object numbers 
 

Fig. 3. HDFOD’s efficiency with increasing numbers of data attributes and objects. The nearness threshold is set 
to 0.35, and the sparsity threshold is set to -2  
 

 
 

Fig. 4. HDFOD’s accuracy with increasing numbers of data attributes and objects. The nearness the sparsity threshold is set to 
0.35, and threshold is set to -2   

 
Fig. 5. Comparisons of accuracy and efficiency among HDFOD, Gen and NOF. Five UCI datasets are tested. 

 
7 Conclusion and Future Work 
 
We have developed a fuzzy constraint-based outlier detection method called HDFOD, which improves not only the 
effectiveness and accuracy of outlier detection, but also the pertinence and understandability of mining results. To 
improve the pertinence, we used the nearness measure theory in fuzzy mathematics to describe a priori information and 
prune some objects that do not satisfy the constraint conditions. Such a constraint technique substantially reduces the 
sizes of datasets. HDFOD detects outlier by searching sparsity subspaces in reduction datasets. For searching 
optimized sparse subspaces, we extended and incorporated the GA into HDFOD. By using synthetic and UCI datasets, 
we were able to validate the efficiency of HDFOD in detecting constraint outlier. In addition, HDFOD’s fuzzy constraint 
improves the pertinence of mining results. Performance tuning will be our future research direction. In particular, we 
will extend our approach to parallel and distributed computing environments, which enable HDFOD in processing large-
scale high- dimensional datasets. 
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