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Abstract. With a huge amount of data generated every second, it has become
important to remove data anomalies. Outliers are the extreme value that deviates
from other observations in data. We propose a novel outlier detection method;
FCBODM (Fuzzy Constraint based Outlier Detection Method) that takes into
account of fuzzy constraint and background knowledge to discover the outliers
in a dataset. Our key idea is to use fuzzy constraint technology wherein we used
nearness measure theory in fuzzy mathematics for finding similarities between
data objects and background information. It helps in finding more meaningful
outliers. Our novel approach can be integrated with traditional outlier detection
methods to improve the outlier ranking. In order to validate and demonstrate the
effectiveness and scalability of our method we experimented it on real and
semantically meaningful datasets.

Keywords: FCBODM � Fuzzy constraints � Outlier detection � Data mining �
Background knowledge � Nearness measure

1 Introduction

An outlier or an anomaly is an observation which deviates from the rest of observations
significantly based on some measure. They are usually present due errors in mea-
surements or different system conditions and thus, does not abide the with common
properties of the system. With the increase in the amount of data, outlier detection has
recently become an important data mining job. It is almost impossible to analyze a
large dataset manually to detect outliers present in it. Hence, a mechanism that can
identify outliers present in the data is essential. Outlier detection finds usage in many
applications like fraud detection in credit cards, network security, medicine and public
health etc. For high dimensional data, locating the correct outliers is not an easy job as
the traditional outlier detection methods are not efficient. Traditional outlier detection
techniques are based on a full dimension space, and incapable of detecting outliers
hidden in partial dimensions because of the dimensionality curse. The outliers present
in a high dimensional dataset remains unidentified due to the presence noise effects of
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many dimensions in it. However, the number of subspaces increases exponentially
when the number of dimension increases, and exhausting all subspaces in high-
dimensional data is impossible.

There are many existing clustering algorithms that detect outliers apart from
clustering [1]. However, these algorithms detect only those points that are not present
in any of the major cluster and call them as an outlier. Thus, the algorithms indirectly
believe that outliers are the background noise with clusters embedded in them. [2]
defines that outliers are those points that are not a member of any cluster and back-
ground noise. They are points which do not follow similar patterns or behavior com-
pared to the other points in the dataset. Distance-based outlier methods take note of the
outlier of a data object by its distance distances to other nearby objects and by the
number of objects nearby [3, 4]. The angle-based outlier method detects an outlier by
checking the difference in the angles formed by the distance vectors of all pair of points
with the query point suspected to be an outlier in the dataset. A good example of such
an algorithm is ABOD [5].

In Density-based outlier detection methods, density of each point in the dataset is
compared w.r.t. the nearby neighborhood [6]. Breunig et al. assigned local outlier
factor (LOF), a score, to all objects in the dataset [7]. In this method, similarities of a
candidate outlier and its density is calculated according to its distance from the sur-
rounding points. The LOF method has been modified many times. Some example of its
other versions are uncertain local outlier factor [8], the flexible kernel density estimates
[9], and natural outlier factor [10]. Eskin [11] proposed a statistical method that uses
statistical tests and machine learning methods for finding anomalies. Chen et al. [12]
presented robust estimation and outlier detection approaches based on their proposed
generalized local statistical framework. However, all the above method follows the
assumption that some set of fixed features are important for the detecting outliers.

There are methods that try to find outliers in an arbitrarily oriented subspace.
Searching for an outlier using all the dimensions is less complex than dealing with a
subset of the dimensions. To solve this problem, an algorithm was proposed by
Aggarwal et al. [13] based on outlier detection in subspace, which can find outliers in
any subspace. Kriegel et al. [14] formulated a local outlier method to find exceptional
outliers by the subspace method. Müller et al. [15] propose an outlier ranking, which
computes local density deviation by searching relevant subspaces for objects deviating
in subspace projections.

The remaining paper is divided into the following sections – Sect. 2 explains the
design of the fuzzy constraint based outlier detection method in detail. It elaborates on
extension of fuzzy constraint method on the traditional methods of detecting outliers.
Section 3 discusses the experimental evaluation of FCBODM on datasets along with
the various evaluation measures used for detecting the quality of outlier results. Sec-
tion 4 provides conclusion and the possibility of future scope towards FCBODM.
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2 Design of the Proposed Algorithm

The following section introduces the fuzzy set and fuzzy similarity scale. Figure 1
shows the complete flowchart of the algorithm.

2.1 Fuzzy Set and Similarity Scale

The notion of fuzzy set was introduced by Zadeh [17] as an extension of the notion of
crisp sets in order to model uncertain data. In a crisp set, an element is either a member
of the set or not. Fuzzy sets, on the other hand, allow elements to be partially in a set.
Each element is given a degree of membership in a set. This membership value can
range from 0 (not an element of the set) to 1 (a member of the set). Formally, fuzzy sets
can be defined as follows:

Definition 1. Let U be a universe of discourse. F is a fuzzy subset of U if there is a
membership function lF : U ! ½0; 1�, which associates with each element u belonging
to U a membership value lF : U in the interval ½0; 1�. The membership value lFðuÞ for
each u belonging U represents the grade of membership of the element u in the fuzzy
set F. Equation 1 gives the notation for a fuzzy set F as proposed by Zadeh.

FðuÞ ¼ u; lFðuÞð Þ : u 2 Uf g ð1Þ

Given s1;; s2;; s3;; s4;. . .; sn;
� �

be n fuzzy sets on n standard classes on X. Given
S 2 FðXÞ, we need to know which class s should belong. To solve this problem, we

Fig. 1. Flowchart of the proposed algorithm

A Fuzzy Constraint Based Outlier Detection Method 517



need to measure the closeness of fuzzy set using nearness measure which is formally
defined as follows:

Definition 2. If N : F Xð Þ � F Xð Þ ! 0; 1½ � satisfies that
1. N ;;Xð Þ ¼ 0 and N S; Sð Þ ¼ 1 whenever S 2 FðXÞ,
2. N S;Tð Þ ¼ NðT; SÞ whenever S; T 2 FðXÞ,
3. N S;Pð Þ�minðN S; Tð Þ;NðT ;PÞ) whenever S�T�P then N is called a nearness

measure.

2.2 Fuzzy Constraint Based on Nearness Measure

There are many types of nearness measures for numerical data such as Euclidean
distance-related, Hamming distance-related, lattice-based methods and Minkowski
distance-related. These distance measures are independent of the underlying data dis-
tribution. In cases where the values along the x-dimension is much larger than the y-
dimension, normalization such as z-transform or min-max normalization of each data
object is performed.

Definition 3. Given a dataset DS consisting of n attributes A ¼ fA1;A2;A3; . . .;Ang.
Let D ¼ fD1;D2;D3; . . .;Dkg be the set of k data objects in DS where
Di ¼ fDi1;DI2;Di3. . .Ding. Therefore, Dij represent the value of the jth attribute of the
ith object. Let M ¼ fM1;M2;M3; . . .;Mkg represent the priori information given by the
users, where Mi is the priori value on attribute i.

Let GðXÞ be a fuzzy set, where X is a subset of the attributes and Di;M 2 FðXÞ.
Equations 3 and 4 represents inner and outer product of Di and Mi respectively.

Di �Mi ¼ _x2XðDiðxÞ ^MiðxÞÞ ð3Þ

Di �Mi ¼ ^x2XðDi xð Þ _Mi xð ÞÞ ð4Þ

The lattice based nearness measures ZL can be defined using x and y as follows:

ZLðOi;UÞ ¼ ðDiðxÞ �MiðxÞÞ ^ ð1	 DiðxÞ �MiðxÞÞ ð5Þ

Let us now describe how lattice based nearness can be used to prune the outliers
from the dataset. Given an object Di, priori knowledge M, and threshold value r, if
ZLðDi;MÞ
 r, then object Di is called a required object, which matches the constraint
condition given by the user. This means the data object is of user’s interest. If
ZLðDi;MÞ\r, then object Di needs to be pruned as it does not match the constraint
condition given by the user. This means the data object is not of user’s interest. In this
algorithm, threshold value r also known as nearness-threshold is provided by users.
Thus, we calculate the nearness measure between each object in dataset DS and priori
knowledgeM. This prunes the dataset DS removing data objects of disinterest from DS.
This reduced dataset helps in improving the efficiency of outlier detection when further
steps are applied on it.

518 V. Sharma et al.



2.3 Pseudocode

const di: ith data object
const : pruning threshold
const n: number of data objects in DS
begin:
normalized_DS:= min_max_normalization(DS)
repeat:
inner:= inner_product(di,Mi)
outer:= outer_product(di,Mi)
nearness_di:= min(inner,1-outer)
if nearness_di< then

pruned_DS:= prune(di,normalized_DS)
until i=n
outliers:= method(pruned_DS)#method:ABOD,KNN,LoOP,COP
end

program FCBODM (Outliers)
var   DS: given dataset
const M: priori information

2.4 Outlier Detection Methods

FCBODM ABOD. It has been seen that comparing distances between points to
identify outliers is not efficient if the dimensionality of the dataset is large. ABOD
algorithm proposes uses the distance between points and the direction of the distance
vectors. Comparison of the angles between two distance vectors to other points is
carried out in the algorithm. This helps to identify outliers in the dataset. If the angles
between the distance vectors of an object are relatively large, then the object is inside
the cluster. However, if the angles between the distance vectors of an object are
relatively small, then the object is outside the cluster. The difference in the direction of
the distance vectors of objects is calculated using ABOF - angle based outlier factor
[7]. The ABOF(A) is the variance over the angles between difference vectors of all
pairs of points in dataset D to a data point A weighted by the distance of the points:

ABOFðA!Þ ¼ VAR
B
!

;C
!

2D
AB;AC
� �
AB
�� ��2� AC

�� ��2
 !

ð6Þ

For every object in the dataset, the ABOF value is calculated and the points are
ranked on their basis. ABOD algorithm has the advantage of not requiring any
parameter.
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FCBODM KNN. Developed by Ramaswamy and Shim [4], KNN is a distance-based
outlier that calculates the distance of a point from its neighboring points. All points in
the dataset are ranked according to their distances from their nearest neighbor. The
points with the largest distance are declared as the outlier. Let there be a point p, then
DK(p) denotes the distance from the kth nearest neighbor. Let n be the number of
outliers that need to be removed. Here, DK(p) also describes the degree of how much
outlier is the point p. Points with larger DK(p) value have sparse surroundings and have
more chances of being an outlier than points inside a dense cluster that have a lower
value of DK(p). Let us say we need to find n outliers. Then, the n points with the
maximum DK(p) values are declared as outliers. An advantage of this method is that
the user need not have to provide a distance variable to qualify a point as an outlier.

FCBODM Simple COP. In order to find an outlier present in the subspaces of the
original attribute space, COP algorithm was made. It considers many combinations of
subsets of attributes, to find outliers deviating from their values. The points detected as
outliers do not relate to any major correlation in the data. The local correlations within
the outlier detection method are considered first. Then, outliers present in the subset of
the actual dataset are identified. It then chooses the relevant correlation of attributes to
detect the corresponding outlier. An object is considered as an outlier if it does not
match the correlations. The objects that are present on a d-dimensional hyperplane,
called correlation hyperplane, show local correlation. Here, d is the dimensionality of
the dataset and d < d. Thus, outliers are the objects that are not present and do not show
any correlation in such hyperplanes.

FCBDOM LoOP. Local outlier probabilities (LoOP) is an outlier detection method
which is based on local density. It evaluates whether a point is an outlier or not by
giving a score from 0 to 1. Let us take a set P containing k objects with d as the distance
function. Let o 2 D be the probabilistic distance to a context set S � P, referred to as
pdist(o,S). This distance has the following property: 8s 2 S: P[d(o,s) � pdist(o,S)]
u. A sphere around o with a radius of pdist covers objects with a probability of u in
set S. The probabilistic distance pdist(o, S) between o and S can be calculated as the
statistical extent of set S. Based on this, density around an object w.r.t. a context set, the
Probabilistic Local Outlier Factor (PLOF) of an object o 2 P w.r.t. a significance k and
a context set S(o) � P, is defined as:

PLOFk;SðoÞ ¼
pdistðk; o; S oð ÞÞ

Es2SðOÞ½pdsit k; s; S sð Þð Þ� ð7Þ

For every object o in the dataset, the PLOF value is calculated which is the ratio of the
estimation for the density around o and the expected value of the estimations for the
densities around all objects in the context set S(o). The points with the minimum sorted
PLOF values are declared outliers.
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3 Experimental Evaluation

3.1 Datasets

We evaluated our algorithm on two types of datasets; real datasets, which have been
used in the research literature and semantically meaningful datasets, where the semantic
interpretation of outliers can be given from the datasets. The algorithm was tested on
six UCI datasets. Prior to the evaluation, we performed dataset preparation for the
evaluation of outlier detection algorithms. The classification datasets have been used
where we assumed class having minority labels as outlier class since outlier detection is
tantamount to detect objects belonging to a rare class. The classification datasets need
to transformed to outlier datasets hence we performed down-sampling of a class,
duplicates removal, min-max normalization and cleaning to deal with categorical and
missing attributes.

Real Datasets. To evaluate our outlier detection we selected three UCI machine
learning repository datasets [20] which are real world benchmark datasets namely -
Shuttle, WPBC, and Ionosphere. Outlier mining is nothing but conceptually similar to
detecting objects belonging to a rare class hence we focus on datasets where the class
labels feature a clear minority class. We assume this class to contain the outliers in
these datasets. In addition, these datasets are pre-processed as illustrated in the above
section. Table 1 summarizes the characteristics of these three datasets.

Semantically Meaningful Datasets. These datasets have certain classes that can be
identified with real world scenarios. Data points containing outliers are both rare and
digressing, for instance, consider patients suffering from ‘Hutchinson-Gilford Progeria’;
a rare disease; among a population of patients. But for some scenarios, there might be a
possibility that outliers are dominated within a discrimination dataset. To overcome this
problem, we down-sampled outlier class (2, 5, 10, 20% of outliers). UCI repository
datasets [20] were selected and processed for evaluation of outlier results. These datasets
are Cardiotocography, Arrhythmia and Heart Disease as illustrated in Table 2.

Table 1. Characteristics of real datasets used in literature

Name Instances Outliers Attributes

Shuttle 351 126 32
WPBC 198 47 33
Ionosphere 148 6 19

Table 2. Characteristics of semantically meaningful datasets.

Name Instances Outliers Attributes

Cardiotocography 2126 471 21
Heart Disease 270 120 13
Arrhythmia 450 206 259
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3.2 Evaluation Measures

Outlier detection methods used here yields a complete ranking of the database objects.
Data points are given an outlier score upon evaluation by the outlier detections
methods. Not every data object is relevant as the user is only interested in finding out
the outlier score of say topmost ranked objects of the whole set. One such evaluation
criteria are Precision at n (P@n) [16] where the target number of data objects; n is
specified well in advance. Precision at n signifies ratio of correct results amid top n
ranks [16]. Consider a database(DB) of size N consisting of outliers O � DB and
inliers I � DB where DB = I [ O. P@n can be formulated as

P@n ¼ jfo 2 Ojrank oð Þ� ngj
n

ð8Þ

While P@n is a measure to evaluate the robustness of the outlier detection algo-
rithm, it is unclear on what value of parameter n to choose. When the number of the
outlier(n = |O|) is low in comparison to large N, P@n value is marginally small hence
not useful enough whereas when the number of outliers(n = |O|) is large enough with
respect to N, P@n would he high as small fraction of inliers exist. For an unambiguous
measure, P@n should be adjusted for a chance to compare different measures where
there is variation in an expected score. Since the maximum number of outliers are O,
P@n maximum value is |O| / n provided that O > n else it is 1. The expected value of a
completely random ranking is given by |O| / n. Henceforth Adjusted P@n is formulated
by the given formula.

Adjusted P@n¼P@n	 Oj j=N
1	 Oj j=N ð9Þ

An anomaly with both these measures is the trade-off between the number of outlier
and inliers. Generally for an outlier dataset, |I| � |O| and |I| = N. P@n and Adjusted
P@n measures are highly sensitive to n. The same issue of sensitivity toward n occurs
with Adjusted P@n. Nonetheless, the other evaluation measures solve this problem by
averaging over values of n. On such measure is average precision (AP) used in
information retrieval evaluation methods. Instead of evaluation over single n, the
values are averaged over ranks of outlier objects.

AP ¼ 1
jOj
X

o2O P@rankðoÞ ð10Þ

Similar to Adjusted P@n, an adjusted form of average precision is used for com-
paring different datasets, having the expected value of random ranking as |O| / n and
maximum value as 1.

Another evaluation measure used widely in unsupervised learning is the Receiver
Operating Characteristic (ROC). It’s obtained by plotting across all n the true positive
rate, and the false positive rate. If a ROC curve is close to the diagonal then it may be
probably due to random outlier ranking, whereas a perfect ranking would result in a
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curve where a vertical line is at false positive rate 0 and a horizontal line is at the top of
the plot. ROC adjusts for a chance as the normalization of false positives rate by false
positive and the normalization of true positive rates by true positive is carried inher-
ently. Therefore, ROC is insensitive to adjustment for a chance. ROC AUC (value
varies between 0 and 1), a measure which summarizes a ROC curve by a single value.
It can be thought as the average of the recall at n, with n taken over the all the ranks of
inlier data objects in |I|. External ground truth labels that are inliers and outlier are
required in all the above evaluation measures.

3.3 Evaluation on the Datasets

To assess and validate the quality of our outlier detection algorithm we have used 3
different curves namely PR AUC, ROC AUC and P@n (where we took n = |O|) as
indicated in Sect. 3.2. For each of the evaluation measure, 3 plots were produced on the
ionosphere (35.9% outliers) and Heart disease (44% outliers) datasets.

On these two groups of datasets we can clearly see the improvement in quality
when compared FCBODM with traditional outlier methods. Figure 2 illustrates Pre-
cision@n, PR AUC and ROC AUC measures on the ionosphere dataset; a real dataset,
with 4 traditional outlier methods as indicated in Sect. 2.3 and four improvised

Fig. 2. Results on real dataset (IONOSPHERE), comparing ROC AUC, Precision@n and
PR AUC with existing outlier algorithms

Fig. 3. Results on semantically meaningful dataset (HEART DISEASE), comparing ROC AUC,
Precision@n and PR AUC with existing outlier algorithms
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FCBODM. An equivalent analysis is depicted in Fig. 3 on the Heart Disease dataset; a
semantically meaningful dataset. Table 3 enumerates all the evaluation measures
suggested in Sect. 3.2 on two real (Shuttle and WPBC) and two semantically mean-
ingful (Heart disease and Arrhythmia) datasets.

We evaluated the runtimes of our algorithm FCBODM with existing outlier
detection methods used in literature. Run time evaluation was carried on a real and a
semantically meaningful UCI dataset. To our observation, FCBODM proved to excel at
runtime when evaluated against earlier outlier methods. Figure 4 (left bar chart) shows
the runtime percentage change in performance due to FCBODM when tested against
traditional methods on SHUTTLE dataset constituting 1.38% of outliers. Computa-
tionally expensive algorithms such as ABOD and simple COP reported a change in the
runtime of about 39.31% and 69.6% respectively while algorithms such KNN and
LoOP suggested an improvement of about 21.05% and 2% respectively.

Table 3. Algorithm results on various evaluation measures.

Datasets Algorithm ROC
AUC

AP Max.
F1

NDCG PR
AUC

Adj.
AP

Adj.
max F1

Adj.
DCG

SHUTTLE ABOD FCBODM 0.97 0.94 0.89 0.99 0.94 0.91 0.84 0.95
ABOD 0.90 0.88 0.83 0.98 0.88 0.81 0.74 0.90
KNN FCBODM 0.98 0.97 0.92 1.00 0.97 0.96 0.88 0.98

KNN 0.92 0.92 0.88 0.99 0.92 0.88 0.81 0.94
LOOP FCBODM 0.98 0.34 0.54 0.62 0.33 0.33 0.53 0.46

LOOP 0.96 0.20 0.36 0.52 0.19 0.19 0.35 0.32
SIMPLE COP FCBODM 0.97 0.27 0.37 0.62 0.25 0.26 0.37 0.45
SIMPLE COP 0.85 0.22 0.39 0.56 0.20 0.21 0.38 0.37

(continued)

Fig. 4. Measure of percentage change in runtime milliseconds when compared with existing
outlier detection techniques on shuttle (left bar chart) and heart dataset (right bar chart).
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We tested FCBODM on semantically meaningful Heart Disease dataset which
comprised 22% of outliers. Figure 4 (right bar chart) reveals that computationally
expensive detection methods resulted in a great improvement in run time; ABOD and
Simple COP, when evaluated on FCBODM, indicated an increase in runtime of
41.48% and 15.66% respectively, whereas other outlier detection methods like KNN
and LoOP led to improvement of 50% and 35.71% respectively.

4 Conclusion and Future Work

We formulated a novel fuzzy constraint-based outlier detection which can be extended
on top of existing outlier detection algorithms to improve not only the various eval-
uation parameters (ROC AUC, PR AUC, NDCG, F1 score) but also helps us to fathom
pertinence of outlier mining results. For improving the relevance of outlier results we
relied on lattice-based nearness measure in fuzzy mathematics is where we pruned
some existing data objects that do not adhere to constraint condition (background
knowledge). Nearness measure technique coupled with constraint condition drastically

Table 3. (continued)

Datasets Algorithm ROC
AUC

AP Max.
F1

NDCG PR
AUC

Adj.
AP

Adj.
max F1

Adj.
DCG

HEART DISEASE ABOD FCBODM 0.78 0.71 0.76 0.93 0.71 0.48 0.57 0.65
ABOD 0.72 0.69 0.76 0.92 0.68 0.38 0.53 0.56

KNN FCBODM 0.68 0.61 0.67 0.90 0.60 0.29 0.40 0.44
KNN 0.55 0.53 0.66 0.86 0.52 0.08 0.34 0.17

LOOP FCBODM 0.56 0.50 0.62 0.86 0.42 0.09 0.31 0.23
LOOP 0.53 0.51 0.66 0.85 0.41 0.05 0.33 0.14
SIMPLE COP FCBODM 0.64 0.56 0.65 0.87 0.55 0.20 0.38 0.31

SIMPLE COP 0.54 0.51 0.67 0.84 0.50 0.04 0.36 0.06
WPBC ABOD FCBODM 0.49 0.29 0.40 0.72 0.26 0.05 0.20 0.16

ABOD 0.48 0.25 0.39 0.69 0.23 0.02 0.20 0.08

KNN FCBODM 0.53 0.26 0.40 0.66 0.26 0.03 0.21 -0.01
KNN 0.47 0.23 0.39 0.63 0.22 -0.02 0.19 -0.09

LOOP FCBODM 0.58 0.31 0.44 0.71 0.27 0.08 0.25 0.13
LOOP 0.59 0.28 0.43 0.69 0.25 0.06 0.25 0.08
SIMPLE COP FCBODM 0.59 0.32 0.47 0.67 0.32 0.09 0.29 0.03

SIMPLE COP 0.59 0.29 0.42 0.67 0.29 0.08 0.25 0.01
ARRHYTHMIA ABOD FCBODM 0.74 0.74 0.68 0.95 0.74 0.53 0.40 0.70

ABOD 0.72 0.71 0.64 0.94 0.71 0.50 0.37 0.69
KNN FCBODM 0.75 0.76 0.68 0.95 0.75 0.55 0.41 0.72
KNN 0.73 0.73 0.64 0.94 0.72 0.52 0.38 0.71

LOOP FCBODM 0.74 0.73 0.68 0.95 0.72 0.51 0.40 0.69
LOOP 0.72 0.71 0.65 0.94 0.69 0.49 0.39 0.69

SIMPLE COP FCBODM 0.93 0.86 0.82 0.97 0.86 0.79 0.73 0.88
SIMPLE COP 0.90 0.85 0.82 0.97 0.84 0.77 0.72 0.86
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reduced the size of the dataset. Our algorithm, when combined with existing outlier
detection methods (ABOD, Simple COP, LoOP, and KNN), yields an improvement in
the performance measures. We validated our results on three real and three semanti-
cally meaningful UCI datasets and our novelty proved to be better than existing outlier
methods. Due to computational constraint, we were unable to evaluate our results on a
large number of datasets and large varieties of algorithms. We aim to use parallel and
distributed environments to improve our results and extend to approach on a greater
number of datasets and existing outlier detection algorithms.
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